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1. The equations of motion in terms of potentials. The
equations of motion for the displacements in a plane anisotropic medium,
in the absence of body forces, are [1]
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where u, v are the components of the displacement vector, a, ¢, d are
elastic constants, the density of the medium having been taken equal to
unity. We shall restrict attention to the case of three elastic constants,
since the more general case can be treated similarly. Introducing the
potentials of rotation free and equivoluminal displacements by means of
the equations
a 0 d 1% '
:_(P+a—$, 0:8—3—%— (1.2)

we obtain the equations of motion in terms of potentials
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A generalization of the method of complex solutions to the case of
systems of homogeneous differential equations of the second order has
already been given in [1 1. These results apply immediately to the
system (1.3) and furnish its solutions of the particular form
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I

(1.3)
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p=®0(Q), $=¥(Q (1.4)
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where Q is defined by
d=1l(Qt +mQz +n(Qy +k£(Q =0 (1.5)

The following formulas are valid for the derivatives of the function
¢ (analogous formulas hold for the function ¢):

»g . t ot o m P o e
31:a'3y8,0ty' o —_—6"_&5[ & 3£2< o’ (D)} @ 4B 41" =3) (1.6)
O =V (Qt4m (R (Qy +k (Q)£0
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It is readily seen that the system (1.3) is satisfied provided that
l, m, n are such that

m[am® 4+ (d +c)n? — B1® - nla—c)m? +dn? — B] ¥ =0
nld4c)m fan? —B)® —mldm? +(a —c) n2 — By’ = ¢ (1.7)

which implies that the following relation must hold:

m [am? 4- (d + ¢) n? — 2] n[(a —c)m? 4 dn® — 12] 0
n{(d -+ c)m? 4 an? — 2] —m[dm?+(a—c)n?—12]| (1.8)
and a similar relation between ®" and ¥. Putting [ = 1, m=—:6, n =],
we may rewrite (1.5) in the form
Oj=t—0;z +-4;(0)y + ki (8) =0 (1.9)

where )Lj are the roots of Equation (1.8), which may be written

a2 L0 Rt (t—0)(5—0)=0 C-ata—a (110

Obviously the A; are the branches of an algebraic function A which
1s single-valued on a Riemann surface which consists of two planes 6,
and 6,, cut, respectively, along the intervals (—1/va, 1/va),
(-1/vd, 1/Vd). The planes are attached to each other along a cut that
joins the branch points 6,°, which are the roots of the equation

() = (3 =)z —#) =0 (111)

a

These roots are not real but complex conjugates, provided that ¢ <
a —: d. This inequality holds for all anisotropic bodies which are con-
sidered in [2 ] as may be seen from the following table [ 2 ], where
unit stress is taken to be 105 g/cm?.
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Medium a d c a—:d
Pyrites (cubic) 3680 1075 592 2505
Fluor Spar 1670 345 797 1325
Rock-salt 477 129 261 348
Potassium chloride 375 65.5 263.5 309.5

In order to construct solutions we shall employ the first of the rela-
tions (1.7). By introducing the functions ¢G and q&, corresponding to
the the root Aj, we obtain

@ (8;) = MP; (0;) 0; (), W;(8;) = 8,0;(8) o; (6)) (1.12)

where @, 1s a branch of an arbitrary algebraic function w which is
single-valued on the Riemann surface mentioned above, and

Pi(8) = (@ —c¢) 82+ dr? — 1, Qi0) =ab?+(d +- o) A" —1  (1.13)

The general real-valued solution (of the form (1.4)) of the system
(1.3) is given by
o; 2 ;

qw%nzgmng@m@a,ww%w=EM&®@m@£

i= j=1

i

In order to obtain the homogeneous solutions of zero order, one has
to set kj = 0 in (1.9); this yields

o =1—0E+A0O)n=0 (s=-F. n=2) (115

which furnishes the correspondence between the above-mentioned Riemann
surface and the domain in the £7-plane, where the functions 6,(&, 1)
and 6,(£, n) are defined. This is a double-sheeted domain, consisting of
two separate domains, corresponding to the planes 6; and 6,, attached
along the cut which joins the branch points (£,°, 7,°). These two points
are the images, in the £7-plane, of the branch points 6,°. The bound-
aries of these domains are obtained as the envelopes of the straight
lines (1.15) for real Gj and Aj. Solving Equation (1.10), we obtain

= [ s Y (R ()=o)

where the radical sign inside the square brackets refers to that branch
which is positive for real 0, and the "outer" square root refers to the
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branch which is positive on the upper banks of the cuts (-1/+va, 1/Va),
(-1/+vd, 1/y/d). For ¢ < a —:d, outside these cuts on the real axis, A;
and A, take on only purely imaginary values. Thus the points of the
Riemann surface which lie on the mentioned cuts correspond, in the ¢7-
plane, to points of curves on the cone of rays; and the point at infinity
corresponds to the origin of coordinates. The two-sheeted domain in the
&n-plane is the simultaneous domain of definition of the functions 6,
and 6,. In the xyt-space it determines the interior of a characteristic
cone of the system (1.3), with vertex at the point x=y =t =0.

2. Lamb’ s problem. Suppose first that on the boundary of an aniso-
tropic half-space y < 0 there act the distributed tractions:

oy=—N(z,t)y, Ty=—T (2,1 for y=0 (2.1)

which differ from zero on the rectangle 0 < t < t,, — l; < x< 1, and
suppose that they have a finite impulse; and introduce the new tractions

Ne@ )=5N(Z, 2), T@y=37(Z, L) @2

€ g €

which differ from zero on the internal 0< ¢t <et,, —¢l; < x<el}, and
let ¢, (2, y, t), Y. (x, y, t) be the corresponding potentials. It is easy
to show that in the limit, as ¢ » 0, we obtain homogeneous functions of
the first order, ¢ and ¢, which carrespond to the action of an instan-
taneous impulse. Thus in order to solve the problem it is necessary to
obtain solutions of the system (1.3), with zero stress components ¢, and

T yy OB the boundary of the domain for t > 0, that is Y

I!

G— D+ ngE— (1+n—6)ax;"y

0 P9 LW Py _

0
(2.3)
dzdy | oy3  Bx2 (61 =g "= T)

The solution will be sought in the form (1.14). The boundary condi-
tions will then be automatically satisfied, provided that the analytic
functions and (I) ‘P , analytic in the upper half-plane, fulfill the re-

lations
Y Rell(c —d) 02 +ar?]l @' + (¢ +-d — ¢) A ;) = O
j=t (2.4)
2 Re (— 204,05 + (A2 — 09 ¥} =0

Using (1.12), we obtain
Re [AMS101 + A2S202] = 0, Re 0 [Miw1 - Mawz] =0 - (2.5)
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from which it follows that

AMS101 -~ AaSe002 = ia, 0 [Mior + Mooz} = if (2.6)
where

Sp= 101 —1) 0 + A1 P +(1 11 — 1) Q;
M; = — 202P; - (A2 — 07) ©;

Using the @;, as determined by (2.6), in Equation (1.12), we obtain

MPM,y o Dby Py 8.3

D - D =

v D ZS:‘ (N"-)"—/)A(O) Sl
2 A(O 70 > =

VW, =i =Ty 1A (0;)

i=1

=k o
(g — 1y (2:8)

Since the immediate determination of the constants a and 8 is not an
easy matter, we shall follow an indirect approach. We shall construct
the solution of the same problem by means of a successive application of
the Fourier and Laplace transformations, as is done in [3 ], and later
compare this solution with (2.8); in this way we arrive at the result

N_, ¢ coS kx T, ¢ oo N sinkx 5o
0= — 22 VB ot W dh (R (B S dk
o - (2.9)
9 k T, ( 0o 0s k
=m0 @ I a2\ 8 (1 ) S ak

0

Here d; = pd, where p is the density of the medium, and N,, T, are
the normal and tangential components of the impulse

R — 1 S N )u]- P, M3_j‘e$ d

5 oo EE) EE)
= oo =1 M TR AT @)
otico 2 oo _ oo, oo cor g
1 Ay Piohg 8, 1 dr
Rnoo - 2\ J J 7 J 5 (2 10)
2% (23] o0 =]
! 0—1i00 i=1 }\'.7 AJ—] (C)
atico 2 oo oo U-LIOO 2
go0 L . 2 Qj st_jeU dt g0 _ 1 E Q 7» ai 3_ 1 dc
1 - 2]_” 4 A,.OQ - }" oc. Aao (c) ) 2 - 2ﬂL ) A, _ A, oo Auo (€/
6—ico I=177 3—) 6—ioo 1 =1

P=30@)=E—4"Y) k

The functioms A °°, M.°°, SJ°° P]°°, Q.°° are obtained from the A ;,
M S P. Q which were introduced earlier, by replacing 6 by i/{.
order to {ietermne a and B, one must compute, for example, d¢/d x. From
the solutions (2.9) we obtain
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dp N, ciog é A:]'OOPJ'DOAI3_°; e g dk .
v wh ) ST =8 ) e =Ty Ly IAT Q)
czo 2 oo oo oo oor goo
+7.\{ 2 — AL I (2.11)
TINE AT ATy 8T )
070 = 6°° (1) = (iz—Li—AS Yk

Interchanging the order of integrations, choosing the contour I, in
such a manner that it encloses only the singularities corresponding to
the roots of the equation ix — A °°y +:{t = 0; employing Jordan’s lemma
and the theorem of residues of Céuchy, we obtain, in terms of the vari-
able 6:

2
ap _ Ny g MPy My 0 T, Mhe iPiSs i .
N gl{_ E (hj =2y 05" A(;)  adh fre (b —hg_3) 8 A(ej)} (242)
8= —z + 4" (8) y

Upon comparison of this equation with the one resulting from the
fundamental equation (2.8), it follows that

. N, R
o= - P=—2g L (213)
which completes the solution of the problem posed at the outset. The de-
terminant A(@) is given by

A (B) = — b (82 + M?) (62 4 Aef) Va i — 62 R (0)

S 44
R(©) = ([0 — (c —dP] 0 — ) VI — oY= 1

Rayleigh’s function R(6) for the anisotropic media was studied in
[1]. It has two real symmetric roots, which correspond to the speed of
propagation of Rayleigh waves on the surface of the given medium. The
qualitative picture of the motion in an anisotropic medium is analogous
to the motion in an isotropic medium. A disturbance which originates at
the origin of coordinates at the time t = 0 is propagated throughout the
entire half-space, dying out gradually at all interior points. With the
passage of time almost all the energy of the disturbance is concentrated
in the neighborhood of the surface of the medium and behaves, at suffi-
ciently large distances from the center of the disturbance, as a Rayleigh
surface wave. For ¢ < a —:d we obtain from (2.8) the known solution of
Lamb’s problem for an isotropic medium.

3. Lamb’s problem with mixed boundary conditions. The bound-
ary conditions will be taken as in [4 ]:
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Txy:() fory:o,.__oO<x<oo

3.1
o, =0 for >0, v=0 for 2 <0
The condition ey =0at boundary points yields
) 0 (M1 + Mew2) = if 3.2)
Putting
MS101 4 A2Sa0w2 = A (8), Re 4 (8) =0 0>0) (3.3)

there occurs the sought function A(9), which will be supposed to be
bounded at infinity. The third boundary condition gives

D (AP + 62Q)0;=B(0), ReB®)=0  (§<0) (3.4)

i=1

while (3.1) and (3.3) together give
by Sy B— 00,5 A®)

i (0) = — 2= 0
o; (%) (h;—Ag_;)A(6;) (3-9)

Substituting into (3.4), we then obtain
T:°A (0) — T2°iff = B (9) . (3.6)

where
2

WP+ 02Q, OM, 2 AP+ 0%Q A, S, s
T1°(9):Z J J+QQJ 9 3—3 TO(G)ZZ J J+9QJ 3—) 32 (37)

A—rn A YT A =R TA®)

In the sequel it will be convenient to replace the constants a, d, c,
respectively, by a2, d"2, ¢ 2. Thus, the sought function A(6), which is
to be analytic in the upper half-plane, will satisfy on the real axis
the conditions

Red () =0 (§>—aq), Rel[T1°4 (8) — T2°if]l =0 B<—a (3.8

Since the functions P, Qj, S;, M are real for real values of the
variable 6, in view of tﬂe value of the determinant A(@) and of the
choice of the branches Aj and of the roots vi(a? - 62) and V(d® —:62)
(they are supposed to be positive on the upper banks of the cuts (-:wq,a),
(-d, d)), we have that the function T, must be real and the function T,
must be purely imaginary when 6 < —:d. Consequently for 6 < —:d we must
have that: Im A(@) = 0, that is to say, the function A(9) may be con-
tinued analytically across this segment of the axis. Denoting by f its
real part on the segment (-d, —:a), we get
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_VITE( __I®E T
a0 =ty VI (3.9)

By the radical v(d +:9) is to be understood here that branch which is
positive on the upper bank of the cut & > —:d. For the function yx{(6), on
the same upper bank, we obtain

xt L X _ Re T2°if8
Ra—R) A0 © (Ri—2a) A(0) Vd+6Q(8)

Qo= Z (—1)8~1 (A2P; + 62Q;) M,_;

(3.10)

Observing the value of A(6), and the fact that y* =-—:x ™", where ¥y~
is the value attained by y(f) when approaching the same segment of the
real axis from below, we deduce that

Xt =Gy~ +g (3.11)
(M — A2) R (9) 2ReiTy° (M — As) A (0)
®) 1) (i — M) B () ® Vitsa® ©

Thus we are led to a well-known boundary-value problem, whose solu-
tion, satisfying all the stated conditions, can be put in the form

X (0) ¢ A —Ao) A

ol €10, 88 e 4 X, (5) ipy (3.12)
2ReiTy? 1 1 ¢ InGpdt
e - _—‘—‘————2 = P 1
0= vimew: O varivin P m _&d E—0

In view of (2.8) we have

2

(0;M3_;A(0) — hg__;S5_;iB) A;P;
D) LDy = I8 3—i"3 it
1+ D2 gl (KJ-—LS_})A(Q)
¥, 2 (0;M,_; A(0) — hy_;S,_iB) 0;Q; (3.13)

A‘ _A’3—]) A (6 )

The constant 8; may be obtained from the condition that the solution
must be bounded for 6 =-~:¢,, where co ~1 is the speed of the Rayleigh
waves. In view of (3.13) this means that

. 2y Mihg iPiSe s
E 3:3 1A(6)_2}V3_J—x3‘*743=0 for § = —co (3.14).

j=t1 i=1 —J
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which in turn implies that, since A(-:¢,) = 0, that the numerator of the
expression for ¥;” + ¥, -is also zero, thus enabling us to evaluate the
constant ; by means of the constant B, and to write that

A (8) = ipdo (9) (3.15)

Substituting this into (3.13), we obtain

2

.M

I S N U
i=1

Ao (B) — Ay S, AP,
3—J 3383/ M3t
=2 A (3.16)

2
, b o (8;My Ao (8) — Ay, 0;Q; -
Y W =B gl e YN (3.47)

Since for large 0 the term containing A,(8) in (3.17) tends to zero,
and Expression (3.17) tends to the solution which corresponds to the
action of a purely tangential component of the impulse, we must have that
B=-:T, /md); and thus the problem has been entirely solved. It may be
readily verified that when ¢ % = a2 —-d™2, we are led back to the re-
sults obtained in the isotropic case in [ 4 ].

4, Reflection of plane waves from rectilinear houndaries.
The consideration of the reflection of a plane wave from a rectilinear
boundary leads to a homogeneous Hilbert problem. The evolution of the
wave 1s given in the form

§1° (%) 4+ @2° (°) = D) AP0 (25°)

==l

Qjo = { — B — }uj (60) y (41)

2
P17 (Q1°) + e () = 21 80Q5°0; ()

where the . are branches of functions which are single-valued on the
above-mentioned Riemann surface. The boundary conditions are mixed (see
Fig. 1; notice that in Figs. land 3 the points {,° are the image points,
in the plane xy at the instant t, of the branch points 6,°). The re-
flected waves, corresponding to various boundary conditions, may be
easily constructed for x > 0 and x < 0. The solution is obtained in the
form

2 2

@1 g2 = 0 (@ 4+ @25 9%-")s Y1 4o = 2 (Vi + ") (4.2)
je=1 =1

where

@5 = — AP0 (Q)°) +A°P°Ci0; (Q_") + Ag—i"P3s— ;"D j00; (5-5°)
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$;i=00Q;°0; (R;°) + 00 Q;°C;0; (Q_;°) + 80 Q3_;D3_;0; (Q;5°)  (4.3)
A7 =Nhj(Bo)y P°=P;j(80), Q5" = Q;(80), Qj=t—8z+A%, ...

and the values of the constants G; and Dj depend on the boundary condi-
tions. Thus for stress-free boundaries we have

PSSy by 28y M S eMy
(}\.jo - As___jo) A° ! 8= (.'A‘; -— 7v3~;) A°

A° = A (80) (4.4)

C; =

and for the boundary conditions applicable for x < 0 we have
C =D = —1, Co =Dy =0 (4.5)

In the sequel we shall take for w; a step function wy(£), which equals
zero for £ > 0 and equals unity for "¢ < 0. For this function the cor-
responding irrotational disturbance, in the domain CFD, corresponding

Fig. 1. Fig, 2.

to the root Ay, is just ¢° + ¢ ° + ¢ °°; while in the domain CED
the disturbance corresponding to the root A, equals $° + ¢ ,° + b °°.
Similarly, the irrotational disturbances in the domains GFF’ and GHEE’
have intensities ¢; + & \°" + & ,"°° and ¢,° + & ,°" + & ,"°°, respect-
ively. In these domains one may also readily determine the intensity of
the corresponding equivoluminal disturbances ‘I’j° + ¥_ j° + ‘I’_]‘-’° and
| lIi__JP' + \P_j’°°. The functions (D-(Gj) and "¥.(8.), which describe
the disturbance 'in the domain OGF Cé 0 " are defined in the upper half-
planes of the Riemann surface. Since the ares CFG and BEA are the
envelopes of the straight lines ¢t ~ 6.x + A.y = 0 for real values of 6,
. . J J . )
and A, the points E and F in the xy-plane must correspond to a single
point 6,, lying on the segment (-a, a) (see Fig. 2). At this point the
single-valued and piecewise constant (on the mentioned interval) func~
tions ®,(6,) + ®,(6,) and ¥,(8,) + ¥, (0,) possess a finite discontin-
uity. Representing these functions by means of integrals of Cauthy type
and differentiating, we easily obtain in the neighborhood of 6,
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, (4.6)
P ’ — Ao — A1%81° - M°Sy° ;“J'OPJ'DMS'*-J'
D1 (6) Do () =, w0 = — 2 = 21 T,
2
, . oSt Ag°Sy° QM
WO Y O g Bo = — 200 oL B

The fact that the shear stress is zero on the boundary of the half-
plane gives

Re (Mio -+ Maw2) = O 4.7y
The fact that there is zero normal stress for x > 0 gives
Re (MmS101 4 AS202) = 0 (8>9) (4.8)
The absence of vertical displacement for x < 0 gives
Re (Twon + Tawe) = 0,  T; = A2P; + 62Q; (60 (4.9}
Since there is no source of vibrations at the origin, it follows that
Moy 4+ Moz = 0
and putting A;S;w; + 4,80, = A(0), we have
Red (8) =0, 6 >0

Expressing o; by means of A(f) and substituting in (4.13), we obtain

TiMy—ToMy AB) _

Re M B(O) == () (8 < 0) (4.10)

It is readily seen that the imaginary part of A{f) is zero for <-4 ;
hence according to (3.9) we obtain A = \/(d +'04,), where

Re TiM; — T My A:(0)

. A 0 (<8< —9) (4.11)

The function 4,(0) has a first-order pole at the point 6 = 6, while
the resulting solution, as before, must be bounded for 6 =-—:¢,. Intro-
ducing the new function A, = (6 --6,)A,/(6 - ¢,), we obtain on the upper
bank of the segment (—d, —:a)

TMei—ToMy A (8) (—d<o<—a) (4.12)

R c -
TR R VE—gR®)

where A;fis the limiting value of the function A, on the segment (-,
—-a) when this segment is approached from above. Denoting by 4, 'its
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boundary value when this segment is approached from below, one sees
readily that A2+ = A,”. This allows us to reduce the problem to the solu-
tion of the following homogeneous Hilbert problem:

_ - . h—M R(O) y
Azt = G4z, G = TR Q) (4.13)

whose general solution has the form

X, (6) Xo (8) = exp g In G’ dg, G = — G (414)

4O =Ryevars =

with B a real constant. The radical is understood to denote the branches
which are positive on the upper banks of the cuts 8 > ~ a and 6 > - d.
Analogously for A,(8) we obtain

_ plte X, (9)
4O =B e, varevare @19

The constants may be evaluated from a consideration of the singular-
ities of the functions ®;”(6) + ®,”(6) and ¥,°(6) + ¥,"(0) at 6 = 6.
According to (4.6), letting 6 tend to 6,, we obtain

—a

g — 204780 + 4S5 mexp(__i., § In G, dg) (4.16)

7t (B + o) Zni ) 8=,
and the problem is entirely solved. Setting ¢c?=ad2-d 2 we are led
to the solution of the same problem for an isotropic body:
G = -%%, F(8) = (& — 20 1 40V — 2 V& — 6
D' (8) =¥ (0) =0 (4.17)
@ @) = @t~ T 40, v w) = @t ) VT A

5. Diffraction by a rigid slit. For an isotropic body this
problem has already been studied in [5] and [6 ]1. The solutions of Equa-
tions (1.1), of the form (1.4), will be constructed for the displace-
ments. According to [1], we obtain

0;

u(z,y,t) = Re [ (81) + usa (82)] = Z Re SJK (&) A; (£) w; (B) dE

"2" 0 5.1y
v (2,3, 1) = Re [v1 (81) + v3 (82)] = D) Re &L (8) w; (E) dE

=1

where
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Li(8) = a8 L+ dA2(§) — 1, K (§) =c% (5.2)

and the variables 0. are defined by the relations (1.15). The elastic
medium occupies the plane with a cut along y = 0, x> 0. For ¢t < 0, 1in
the left half-plane x < 0, we have a plane wave

u’ (x,y,t) = — K (80) [A1°@n® (Q:°) + A2"0n® (Q:2°)] (5.9)
v° (%, ¥, 1) = La (B0) 01” (1°) + Lz (Bo) @2° (£2°)
Q;° =1 — oz — A;°y 08 <9

which impinges at the time t = 0 on the edge of the slit. The diffraction
pattern for t > 0 is depicted in Fig. 3.

The reflection of the plane waves in the neighborhood of the lower

Pig. 3.

boundary of the slit may be obtained by a calculation of the boundary
conditions corresponding to a wave packet of plane waves of the form

0% (2, ¥, 1) = 2 K°[— A;°0;° (25°) + A°N0;° () + k' Ei0° (7)1
i=1
2

v (2,9, 1) = ) (L7 0 () +LNw; () +LiEw (2]

=1

Qjc' = — Box + )\.joy, K°k—; K (90), Ljo = Ljo (60) (5.4)

In order to fulfill the conditions for y = 0 we must have

AeL 4 h, L:° 2A.°L°
33— 3—3 3 E; 3 M (55)

Nj - © ¥ ;== o o
MLa—j—Roils MLy j—hg 5L;

Let us formulate our boundary-value problem for the functions
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t

b () = (8) +ux(®), v® =00+ (6=—) (.5

i.e. let us find the values of these functions on the real axis, where
the variables 0, and 0,, defined by the relations (1.15), coincide. The
functions u; and v; represent the disturbance in the domain AF,GFB of
the planes "0. of the Riemann surface, where cuts have to be made, re-
spectively, along the segments of the real axis 6, > ~ a and 6, > ~ d
(see Fig. 4). Since the function @ °(£) is a step function which equals
zero for £ < 0 and equals unity for & > 0, it follows that the functions
Re u(9) and Re v(@) are piecewise constant on the boundaries of the cut,
and that

Reu (8) = Rev (8) =0 (0> 0oy
(5.7)
Reu (8) = a°, Re v (6) = p° (—a<C0 <0y

where 0, on the upper bank of the cut corresponds to the points E and F,
and on the lower bank corresponds to the points E; and F; (see Fig. 3):

e’ = wm® 4+ u’ =k (M° + A, B° = vi® 4 v2° = L:° +L2° (5.8)

Performing a cut in the plane 6, along the segment (-d, —a), and
denoting by f, and f, respectively the real values of u(6) and v(0) along
this segment, we obtain readily, as in [5 ]

—a

ry & 1 Vd 48, 1 Vd+Ef
u (e) T mi 6 — 90 Vm + 24 Vﬁé —Sd E-O dg (59)
s Bt VaFE, 1 T VidTi,
U(e)—nie_eo V—d+6 +nivm§d g_e f2d§
Let us put (5.10)
a® T 1 0. oo 0o _ 1 - d_—}"—é ’
4O =ZVTF0 +(68—0) D°0), OO == | EFd

—a

BO=SVTToh +0—mye@, e -4 | L e

—d

According to (5.1) we have

. _ A@) _ B ()
K (8) [Mor 4 Azoz] =G vire’ Lior + Lawa © o) ViTe (5.11)
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which implies
LA (6) — KhoB (8)
(0—0p) Vd+ 6 MK

o (9) = (5.12)

Kb (8) = Mle — hels = V2= 80 ) [@VT—F L2 VE =8

a?b2c®

Since the function o, may be continued analytically across the seg-

ment {(~d, —a), i.e. its limiting values from above and below this seg-
ment must coincide: a)1+ = o, we are led to the equation
A+ AN\ B+ B-
Le(fr + 5=) = Bl (5 — 2) (5.13)

The right-hand side of this equation is real, while the left-hand
side is purely imaginary, because A™= -AY, B~ = -B, Al =- A1+, and
Lg anc.i K are real on the segment in question; consequently, this equa-
tion is equivalent to the following two equations:

At = G A- , L ha—h AVE—+ 2YFES
Bt = G\'B- (C = — G = Mth o2 Vaz"‘62—~a2]/d2——-1]2 ) (5.143

The solution of these equations, which is bounded at infinity and in
the neighborhood of the boundary points, has the form

(5.15)
A@) =@ VI Yo @), B 6) = B0 ), Yo ©) =exppy | 275 a8

The function w;(0), and together with it the functions u,’(6) and
v,7(8), is holomorphic in the neighborhood of the point 0=-d, and
satisfies
N
o1 (0 — 7
|1 (0) |<Iﬁ+dj“
where N and y are real constants, with y < 1. Consequently, the point
@ = ~ d is a removable singularity for this function. The constants a°°
and B°° may be obtained by comparing (5.10) and (5.15) for 6 = 6,; the
result is

oo . O]/a + 8o 0o ° V(ﬁ_e_"
e AR Al i

1f, instead, we choose the functions ®°°(6) and ¥°°(6) as unknown
functions, we obtain nonhomogeneous equations of the type studied in
[51. However, in this case the structure of the solution is much more
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complicated than in (5.13) above, where the whole matter reduces to the

calculation of a single function Y,(6), which may be given in the form
of tables [6].

3.
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